Part Number Hot Search : 
PMB2306 5710DN 10100C BUV61 AT5562 ILX3232 T520AE MDA3510
Product Description
Full Text Search
 

To Download MAX474 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-0260; Rev 1; 3/95
Single/Dual/Quad, 10MHz Single-Supply Op Amps
_______________General Description
The single MAX473, dual MAX474, and quad MAX475 are single-supply (2.7V to 5.25V), unity-gain-stable op amps with rail-to-rail output swing. Each op amp guarantees a 10MHz unity-gain bandwidth, 15V/s slew rate, and 600 drive capability while typically consuming only 2mA supply current. In addition, the input range includes the negative supply rail and the output swings to within 50mV of each supply rail. Single-supply operation makes these devices ideal for low-power and low-voltage portable applications. With their fast slew rate and settling time, they can replace higher-current op amps in large-signal applications. The MAX473/MAX474/MAX475 are available in DIP and SO packages in the industry-standard op-amp pin configurations. The MAX473 and MAX474 are also offered in the MAX package, the smallest 8-pin SO.
____________________________Features
o 15V/s Min Slew Rate o +3V Single-Supply Operation o Guaranteed 10MHz Unity-Gain Bandwidth o 2mA Supply Current per Amplifier o Input Range Includes Negative Rail o Outputs Short-Circuit Protected o Rail-to-Rail Output Swing (to within 50mV) o MAX Package (the smallest 8-pin SO)
MAX473/MAX474/MAX475
______________Ordering Information
PART MAX473CPA MAX473CSA MAX473CUA MAX473C/D MAX473EPA MAX473ESA MAX473MJA TEMP. RANGE 0C to +70C 0C to +70C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -55C to +125C PIN-PACKAGE 8 Plastic DIP 8 SO 8 MAX Dice* 8 Plastic DIP 8 SO 8 CERDIP
________________________Applications
Portable Equipment Battery-Powered Instruments Signal Processing Discrete Filters Signal Conditioning Servo-Loops
Ordering Information continued on last page. * Dice are specified at TA = +25C, DC parameters only.
__________Typical Operating Circuit
9.9k
_________________Pin Configurations
TOP VIEW
9.9k
82pF
82pF
NULL IN-
1 2 3 4
MAX473
8 7 6 5
NULL VCC OUT N.C.
3V 3V 9.9k 9.9k VIN 100mVp-p
1/4 MAX475 1/4 MAX475 1/4 MAX475
IN+ 3V 9.9k VEE
DIP/SO/MAX
1V 127k 9.9k fo = 190kHz Q = 10 1V BANDPASS OUTPUT 1Vp-p at 190kHz 1V
OUTA 1 INA- 2 INA+ 3 VEE 4
MAX474
A B
8 7 6 5
VCC OUTB INBINB+
DIP/SO/MAX
BANDPASS FILTER
Pin Configurations continued on last page.
1
________________________________________________________________ Maxim Integrated Products
Call toll free 1-800-998-8800 for free samples or literature.
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC - VEE)......................................................7V Input Voltage (IN+, IN-, IN_+, IN_-) .........................(VCC + 0.3V) to (VEE - 0.3V) Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (TA = +70C) 8-Pin Plastic DIP (derate 9.09mW/C above +70C) ...727mW 8-Pin SO (derate 5.88mW/C above +70C)................471mW 8-Pin MAX (derate 4.1mW/C above +70C) .............330mW 8-Pin CERDIP (derate 8.00mW/C above +70C)........640mW 14-Pin Plastic DIP (derate 10.00mW/C above +70C)...800mW 14-Pin SO (derate 8.33mW/C above +70C)..............667mW 14-Pin CERDIP (derate 9.09mW/C above +70C)......727mW Operating Temperature Ranges MAX47_C_ _ ......................................................0C to +70C MAX47_E_ _.....................................................-40C to +85C MAX47_MJ_ ...................................................-55C to +125C Junction Temperatures MAX47_C_ _/E_ _........................................................ +150C MAX47_MJ_ ................................................................ +175C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10sec) .............................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
PARAMETER Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Voltage Common-Mode Rejection Ratio Power-Supply Rejection Ratio Input Noise-Voltage Density SYMBOL
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = +25C, unless otherwise noted.) CONDITIONS MAX473 VOS IB IOS VCM CMRR PSRR en High Low VEE VCM (VCC - 1.9V) VCC = 2.7V to 6.0V f = 10kHz 0.3V VOUT (VCC - 0.5V) Large-Signal Gain (Note 1) AVOL Sinking 5mA Sourcing 5mA Output Voltage Slew Rate Unity-Gain Bandwidth (Note 2) VOH VOL SR GBW RL = no load RL = 10k RL = 600 VCC = 5V VCC = 3V VCC = 5V VCC = 3V VCC - 0.05 VEE + 0.05 15 10 17 12 10 94 82 80 80 VCC - 1.9 MAX474 MAX475 Current flows out of terminals 0 MIN TYP 0.70 0.70 0.80 80 10 VCC - 1.7 VEE - 0.1 90 90 40 110 105 90 76 100 76 90 V V/s MHz dB VEE MAX 2.0 2.0 2.5 150 30 nA nA V dB dB nV/Hz mV UNITS
VIN+ - VIN- = +1V, RL = no load VIN+ - VIN- = -1V, RL = no load VCC = 5V, RL = 10k, CL = 20pF, VIN+ - VIN- = +1V step 3V VCC 5V VCC = 2.7V
2
_______________________________________________________________________________________
Single/Dual/Quad, 10MHz Single-Supply Op Amps
ELECTRICAL CHARACTERISTICS (continued)
PARAMETER Settling Time Power-Up Time Overshoot Phase Margin Gain Margin Supply Current Operating Supply-Voltage Range IS SYMBOL tS tPU
MAX473/MAX474/MAX475
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = +25C, unless otherwise noted.) CONDITIONS To 0.1%, CL = 20pF AV = +1, VIN = 1/2 VCC step, see Typical Operating Characteristics CL = 150pF CL = 20pF RL = 10k, CL = 20pF RL = 10k, CL = 20pF Per amplifier Single supply Dual supplies 2.7 1.35 VCC = 5V VCC = 3V VCC = 5V VCC = 3V MIN TYP 400 700 10 5 63 58 10 12 2.0 3.0 5.25 2.625 MAX UNITS ns ns % degrees dB mA V
ELECTRICAL CHARACTERISTICS
PARAMETER Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Large-Signal Gain (Note 1) Output Voltage Slew Rate Supply Current Operating Supply-Voltage Range SYMBOL
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = 0C to +70C, unless otherwise noted.) CONDITIONS MAX473 VOS IB IOS CMRR PSRR AVOL VOH VOL SR IS VEE VCM (VCC - 1.9V) VCC = 2.7V to 6.0V 0.4V VOUT (VCC - 0.6V) RL = 10k RL = 600 78 78 94 80 VCC - 0.07 VEE + 0.07 12 3.3 2.7 1.35 5.25 2.625 MAX474 MAX475 Current flows out of terminals 0 MIN TYP MAX 2.0 2.0 3.0 175 35 nA nA dB dB dB V V/s mA V mV UNITS
VIN+ - VIN- = +1V, RL = no load VIN+ - VIN- = -1V, RL = no load VCC = 5V, RL = 10k, CL = 20pF, VIN+ - VIN- = +1V step Per amplifier Single supply Dual supplies
_______________________________________________________________________________________
3
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
ELECTRICAL CHARACTERISTICS
PARAMETER Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Large-Signal Gain (Note 1) Output Voltage Slew Rate Supply Current Operating Supply-Voltage Range SYMBOL MAX473 VOS IB IOS CMRR PSRR AVOL VOH VOL SR IS VEE VCM (VCC - 2.0V) VCC = 2.7V to 6.0V 0.4V VOUT (VCC - 0.6V) RL = 10k RL = 600 72 72 94 72 VCC - 0.08 VEE + 0.08 10 3.4 2.7 1.35 5.25 2.625 MAX474 MAX475 Current flows out of terminals 0 (+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = -40C to +85C, unless otherwise noted.) CONDITIONS MIN TYP MAX 2.3 2.3 3.3 200 50 nA nA dB dB dB V V/s mA V mV UNITS
VIN+ - VIN- = +1V, RL = no load VIN+ - VIN- = - 1V, RL = no load VCC = 5V, RL = 10k, CL = 20pF, VIN + - VIN- = +1V step Per amplifier Single supply Dual supplies
ELECTRICAL CHARACTERISTICS
PARAMETER Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Rejection Ratio Power-Supply Rejection Ratio Large-Signal Gain (Note 1) Output Voltage Slew Rate Supply Current Operating Supply-Voltage Range SYMBOL
(+3V VCC +5V, VEE = 0V, VCM = 0.5V, VOUT = 0.5V, TA = -55C to +125C, unless otherwise noted.) CONDITIONS MAX473 VOS IB IOS CMRR PSRR AVOL VOH VOL SR IS VEE VCM (VCC - 2.15V) VCC = 2.7V to 6.0V 0.5V VOUT (VCC - 0.6V) RL = 10k RL = 600 70 70 90 70 VCC - 0.1 VEE + 0.1 9 3.6 2.7 1.35 5.25 V Dual supplies 2.625 MAX474 MAX475 Current flows out of terminals 0 MIN TYP MAX 2.8 2.8 4.0 225 60 nA nA dB dB dB V V/s mA mV UNITS
VIN+ - VIN- = +1V, RL = no load VIN+ - VIN- = -1V, RL = no load VCC = 5V, RL = 10k, CL = 20pF, VIN+ - VIN- = +1V step Per amplifier Single supply
Note 1: Gain decreases to zero as the output swings beyond the specified limits. Note 2: Guaranteed by correlation to slew rate.
4
_______________________________________________________________________________________
Single/Dual/Quad, 10MHz Single-Supply Op Amps
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0V, TA = +25C, unless otherwise noted.)
SUPPLY CURRENT PER AMPLIFIER vs. SUPPLY VOLTAGE
473 TOC-01
MAX473/MAX474/MAX475
SUPPLY CURRENT vs. TEMPERATURE
473 TOC-02
INPUT BIAS CURRENT vs. TEMPERATURE
473 TOC-03
3.0
3.0 2.5
120 100 80 IB (nA)
2.5 2.0 IS (mA) 2.0 IS (mA) 1.5 1.0 1.5 0.5 1.0 2 3 4 VCC-VEE (V) 5 6 0 -60
VCC = 5V
VCC = 3V
60 40 20 0 -60
-20
20
60
100
140
-20
20
60
100
140
TEMPERATURE (C)
TEMPERATURE (C)
GAIN-BANDWIDTH PRODUCT vs. TEMPERATURE
AVCL = 40dB
473 TOC-04
SLEW RATE vs. TEMPERATURE
473 TOC-05
MAXIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE
VCC = 5V
473 TOC-06
16
20
5.2
15 SLEW RATE (V/s) GBW (MHz)
17
VCC = 5V VOUT MAX (V)
5.1
5.0
VCC 1V
14
14 VCC = 3V 11
4.9
13
4.8
RL
12 -60
-20
20
60
100
140
8 -60
4.7 -20 20 60 100 140 0.1 1 10 100 1000 TEMPERATURE (C) LOAD RESISTANCE (k)
TEMPERATURE (C)
MAXIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE
473 TOC-07
MINIMUM OUTPUT VOLTAGE vs. LOAD RESISTANCE
VCC 1V RL
473 TOC-08
3.1
VCC = 3V
0.5
3.0 VOUT MAX (V) VOUT MIN (V)
0.4
0.3
2.9
VCC
0.2 VCC = 5V VCC = 3V
2.8
1V
0.1
RL
2.7 0.1 1 10 100 1000 LOAD RESISTANCE (k)
0 0.1 1 10 100 1000 10,000 LOAD RESISTANCE (k)
_______________________________________________________________________________________
5
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25C, unless otherwise noted.)
MINIMUM OUTPUT VOLTAGE vs. TEMPERATURE
473 TOC-09
MAXIMUM OUTPUT VOLTAGE vs. TEMPERATURE
473 TOC-10
OPEN-LOOP VOLTAGE GAIN vs. LOAD RESISTANCE
OPEN-LOOP VOLTAGE GAIN (dB) VCC = 3V 115 VCC = 5V
473 TOC-11 473 TOC-14
50
1V VCC
20
125
VOUT MIN, IVEE -VOUTI (mV)
VOUT MAX, VCC -VOUT (mV)
40
15
30 VCC = 5V
10
VCC = 5V
105
20
VCC = 3V 5
1V
VCC
10
VCC = 3V
95
0 -60
-20
20
60
100
140
0 -60
85 -20 20 60 100 140 0.1 1 10 100 1000 10,000 TEMPERATURE (C) LOAD RESISTANCE (k)
TEMPERATURE (C)
OPEN-LOOP GAIN vs. TEMPERATURE
473 TOC-12
OVERSHOOT vs. CAPACITIVE LOAD
473 TOC-13
VOLTAGE-NOISE DENSITY vs. FREQUENCY
1000 VOLTAGE-NOISE DENSITY (nV/Hz) INPUT REFERRED
130 RL = 10k 110 OPEN-LOOP GAIN (dB)
40
RL = NO LOAD
30 90 RL = 600 70 50 30 10 -60 0 -20 20 60 100 140 1 10 100 1000 TEMPERATURE (C) CAPACITIVE LOAD (pF) OVERSHOOT (%)
20 VCC = 3V 0.5V STEP 10 VCC = 5V 1.0V STEP
100
10 10 100 1k FREQUENCY (Hz) 10k 100k
CURRENT-NOISE DENSITY vs. FREQUENCY
INPUT REFERRED
473 TOC-15
TOTAL HARMONIC DISTORTION AND NOISE vs. FREQUENCY
AV = +1 VIN = 1.5Vp-p
473 TOC-17
100 CURRENT-NOISE DENSITY (pA/Hz)
-60 -65 THD + NOISE (dB) -70 -75 -80 -85
10 10 100 1k FREQUENCY (Hz) 10k 100k
-90 10 100 1k 10k 100k FREQUENCY (Hz)
6
_______________________________________________________________________________________
Single/Dual/Quad, 10MHz Single-Supply Op Amps
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25C, unless otherwise noted.)
POWER-SUPPLY REJECTION RATIO vs. FREQUENCY
473 TOC-23
MAX473/MAX474/MAX475
UNITY-GAIN FOLLOWER FREQUENCY RESPONSE
473 TOC-19
UNITY-GAIN FOLLOWER FREQUENCY RESPONSE
144 108 PHASE (DEGREES) 0 GAIN GAIN (dB) -1 PHASE VCC = 5V RL = 10k II 20pF
473 TOC-20
80 70 60
1
VCC = 3V RL = 10k II 20pF
180
1
180 144 108 PHASE (DEGREES) 72 36 0
0 GAIN (dB) GAIN -1 PHASE -2 VCC = 5V 250mV -3 VCC = 3V 300mV
72 36 0 -36 -72 -108 -144 -180
PSRR (dB)
50 40 30 20 1 10
-2
-36 -72
-3
-108 -144
-4 1k 10k 100k 1M 10M FREQUENCY (Hz)
-180
100
1000
1k
10k
100k
1M
10M
FREQUENCY (kHz)
FREQUENCY (Hz)
GAIN AND PHASE vs. FREQUENCY
473 TOC-21
GAIN AND PHASE vs. FREQUENCY
144 108 72 36 20 GAIN (dB) PHASE PHASE (DEGREES) 40 VCC = 5V GAIN
473 TOC-22
40
VCC = 3V GAIN
180
180 144 108 72 36 PHASE (DEGREES)
20 GAIN (dB) PHASE
0
0 -36 -72
10k 10k 20pF
0
0 -36 -72
10k 10k 20pF
-20
-20
-108 -144 -180 1M 10M -40 1k
100
-108 -144 -180 1M 10M
-40 1k
100
10k
100k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
0.1Hz to 10Hz VOLTAGE NOISE
INPUT REFERRED VOLTAGE (2V/div)
POWER-UP TIME
A
1k 1k
100k 10pF
B
500ns/div 1sec/div A : VCC, 5V/div B : VOUT, 1V/div
_______________________________________________________________________________________
7
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0V, TA = +25C, unless otherwise noted.)
SMALL-SIGNAL TRANSIENT RESPONSE (VCC = 5V)
SMALL-SIGNAL TRANSIENT RESPONSE (VCC = 3V)
A 0.5V
A 0.5V
B 0.5V
B 0.5V
200ns/div VCC = 5V, AV = +1, RL = 10k, CL = 220pF A : VIN, 50mV/div B : VOUT, 50mV/div
200ns/div VCC = 3V, AV = +1, RL = 10k, CL = 100pF A : VIN, 50mV/div B : VOUT, 50mV/div
LARGE-SIGNAL TRANSIENT RESPONSE
A 0.5V
OVERDRIVING THE OUTPUT
A 1.5V
B
B
0.5V 0V 200ns/div VCC = 5V, AV = +1, RL = 10k, CL = 220pF A : VIN, 1V/div B : VOUT, 500mV/div 200ns/div VCC = 5V, VIN- = 2.0V, RL = 10k, CL = 33pF A : VIN+, 1V/div B : VOUT, 1V/div
8
_______________________________________________________________________________________
Single/Dual/Quad, 10MHz Single-Supply Op Amps
______________________________________________________________Pin Description
PIN NAME MAX473 1, 8 -- 2 -- 3 -- 4 5 -- 6 -- -- 7 -- -- -- -- -- -- MAX474 -- 1 -- 2 -- 3 4 -- 5 -- 6 7 8 -- -- -- -- -- -- MAX475 -- 1 -- 2 -- 3 11 -- 5 -- 6 7 4 8 9 10 12 13 14 NULL OUTA ININAIN+ INA+ VEE N.C. INB+ OUT INBOUTB VCC OUTC INCINC+ IND+ INDOUTD Offset Null Input. Connect to one end of 2k potentiometer for offset voltage trimming. Connect wiper to VEE. See Figure 1. Amplifier A Output Inverting Input Amplifier A Inverting Input Noninverting Input Amplifier A Noninverting Input Negative Power-Supply Pin. Connect to ground or a negative voltage. No Connect--not internally connected Amplifier B Noninverting Input Amplifier Output Amplifier B Inverting Input Amplifier B Output Positive Power-Supply Pin. Connect to (+) terminal of power supply. Amplifier C Output Amplifier C Inverting Input Amplifier C Noninverting Input Amplifier D Noninverting Input Amplifier D Inverting Input Amplifier D Output FUNCTION
MAX473/MAX474/MAX475
__________Applications Information
Power Supplies
The MAX473/MAX474/MAX475 operate from a single 2.7V to 5.25V power supply, or from dual supplies of 1.35V to 2.625V. For single-supply operation, bypass the power supply with 0.1F. If operating from dual supplies, bypass each supply to ground. With 0.1F bypass capacitance, channel separation (MAX474/MAX475) is typically better than 120dB with signal frequencies up to 300kHz. Increasing the bypass capacitance (e.g. 10F || 0.1F) maintains channel separation at higher frequencies.
The MAX473/MAX474/MAX475 are bipolar op amps with low input bias currents. The bias currents at both inputs flow out of the device. Matching the resistance at the op amp's inputs significantly reduces the offset error caused by the bias currents. Place a resistor (R3) from the noninverting input to ground when using the inverting configuration (Figure 2a); place R3 in series with the noninverting input when using the noninverting configuration (Figure 2b). Select R3 such that the parallel combination of R2 and R1 equals R3. Adding R3 will slightly increase the op amp's voltage noise.
Output Loading and Stability
The MAX473/MAX474/MAX475 op amps are unity-gain stable. Any op amp's stability depends on the configuration, closed-loop gain, and load capacitance. The unity-gain, noninverting buffer is the most sensitive gain configuration, and driving capacitive loads decreases stability.
Minimizing Offsets
The MAX473's maximum offset voltage is 2mV (TA = +25C). If additional offset adjustment is required, connect a 2k trim potentiometer between pins 1, 8, and 4 (Figure 1). Input offset voltage for the dual MAX474 and quad MAX475 cannot be externally trimmed.
_______________________________________________________________________________________
9
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
R2
R1 2k VIN VOUT
1
NULL
NULL 8 R3
MAX473
4
R3 = R2R1
VEE
Figure 2a. Reducing Offset Error Due to Bias Current: Inverting Configuration
Figure 1. Offset Null Circuit
VIN
R3
VOUT
The MAX473/MAX474/MAX475 have excellent phase margin (the difference between 180 and the unity-gain phase angle). It is typically 63 with a load of 10k in parallel with 20pF. Generally, higher phase margins indicate greater stability. Capacitive loads form an RC network with the op amp's output resistance, causing additional phase shift that reduces the phase margin. Figure 3 shows the MAX473/MAX474/MAX475 output response when driving a 390pF load in parallel with 10k. When driving large capacitive loads, add an output isolation resistor, as shown in Figure 4. This resistor improves the phase margin by isolating the load capacitance from the amplifier output. Figure 5 shows the MAX473/MAX474/MAX475 driving a capacitive load of 1000pF using the circuit of Figure 4.
R2
R1
R3 = R2R1
Figure 2b. Reducing Offset Error Due to Bias Current: Noninverting Configuration
Feedback Resistors
The feedback resistors appear as a resistance network to the op amp's feedback input (Figure 2). This resistance, combined with the op amp's input and stray capacitance (total input capacitance), forms a pole that adds unwanted phase shift when either the total input capacitance or feedback resistance is too large. For example, using the noninverting configuration with a gain of 10, if the total capacitance at the negative input is 10pF and the effective resistance (R1 || R2) is 9k, this RC network introduces a pole at fo = 1.8MHz. At
input frequencies above fo, the pole introduces additional phase shift, which reduces the overall bandwidth and adversely affects stability. Choose feedback resistors small enough so they do not adversely affect the op amp's operation at the frequencies of interest.
Overdriving the Outputs
The output voltage swing for specified operation is from (VEE + 0.3V) to (VCC - 0.5V) (see Electrical Characteristics). Exercising the outputs beyond these limits drives the output transistors toward saturation, resulting in bandwidth degradation, response-time increase, and gain decrease (which affects linearity). Operation in this region causes a slight distortion in the output waveform, but does not adversely affect the op amp.
10
______________________________________________________________________________________
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
Driving 390pF in parallel with 10k, VCC = 5V, buffer configuration
Figure 3. MAX474 Driving 390pF
Figure 5. The MAX473 easily drives 1000pF using the Capacitive-Load Driving Circuit (Figure 4).
100 FULL-POWER BANDWIDTH (MHz) SMALL-SIGNAL GAIN BANDWIDTH 10
MAX473/MAX474/ MAX475
RL 10 VOUT VIN CL
1 FULL-POWER BANDWIDTH
0.1 0 1 2 3 4 OUTPUT VOLTAGE SWING (Vp-p)
Figure 4. Capacitive-Load Driving Circuit
Figure 6. Full-Power Bandwidth vs. Peak-to-Peak AC Voltage
Full-Power Bandwidth
The MAX473/MAX474/MAX475's fast 15V/s slew rate maximizes full-power bandwidth (FPBW). The FPBW is given by: SR FPBW (Hz) = -------------------------- [VOUT peak-to-peak(max)] where the slew rate (SR) is 15V/s min. Figure 6 shows the full-power bandwidth as a function of the peak-topeak AC output voltage.
MAX473-FIG6
Layout
A good layout improves performance by decreasing the amount of stray capacitance at the amplifier's inputs and output. Since stray capacitance might be unavoidable, minimize trace lengths and resistor leads, and place external components as close to the pins as possible.
______________________________________________________________________________________
11
Single/Dual/Quad, 10MHz Single-Supply Op Amps MAX473/MAX474/MAX475
_Ordering Information (continued)
PART MAX474CPA MAX474CSA MAX474CUA MAX474C/D MAX474EPA MAX474ESA MAX474MJA MAX475CPD MAX475CSD MAX475EPD MAX475ESD MAX475MJD TEMP. RANGE 0C to +70C 0C to +70C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -55C to +125C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -55C to +125C PIN-PACKAGE 8 Plastic DIP 8 SO 8 MAX Dice* 8 Plastic DIP 8 SO 8 CERDIP 14 Plastic DIP 14 SO 14 Plastic DIP 14 SO 14 CERDIP
NULL ININ+ NULL V CC 0.065" (1.651mm) OUT
_________________Chip Topographies
MAX473
V EE
* Dice are specified at TA = +25C, DC parameters only.
0.052" (1.321mm)
TRANSISTOR COUNT: 185 SUBSTRATE CONNECTED TO VEE
____Pin Configurations (continued)
TOP VIEW
MAX474
V CC
OUTA 1 INA- 2 INA+ 3 VCC 4 INB+ 5 INB- 6 OUTB 7
14 OUTD
A
D
13 IND12 IND+ 11 VEE
OUTA
OUTB
MAX475
B C
INA-
10 INC+ 9 8 INCOUTC
INB0.084" (2.134mm) INB+
INA+
DIP/SO
V EE 0.058" (1.473mm)
TRANSISTOR COUNT: 355 SUBSTRATE CONNECTED TO VEE
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 (c) 1995 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX474

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X